Rice University logo
Top blue bar image

Numerical modeling in Solar Physics – Stephen Bradshaw

A selection of movies demonstrating the advanced numerical modeling and visualization capabilities of the Solar Physics Group. The movies show the predicted evolution of an active region core subject to a large number of small-scale heating events (nanoflares), as it would be observed by the SDO/AIA 94, 131, 171, 193, 211, and 335 Å channels. There are 400 magnetic field lines comprising the active region core, which was subject to a total of 4000 nanoflares with energies drawn from a power-law distribution between 10^23 – 10^25 erg and a spectral index of -2.5. The delay between nanoflares re-energizing plasma along a field line was chosen to be proportional to the energy of the next event. These represent ‘synthetic’ observations and they can be analyzed using exactly the same tools and techniques as the real observations provided by our fleet of space-based instrumentation. This allows direct comparisons to be made between model results and observational data, and provides extremely strong constraints on the physics of coronal loops and on the properties of potential coronal heating mechanisms.


Comments are closed.